Warm -Up

Simplify

1)
$$(9+\sqrt{6})(-8+\sqrt{6})$$

2)
$$\frac{5}{3-\sqrt{2}}$$

Evaluate

3)
$$f(x) = \sqrt{7-3x}$$
 $f(5)$

Objective:

Today we will:

- Review Radical properties
- Add, Subtract, and Multiply Complex numbers
- Simplify rational expressions with complex numbers

Agenda:

- Policy Review
- Radical Bingo
- Complex Number notes and examples
- Hand back tests
- Independent practice

Upcoming Dates

- Quiz Tuesday (2/16)
- Unit 1 Test- Monday (2/22)

Complex Numbers

Combination of Real and Imaginary numbers

7 + 3i

Imaginary Numbers

Definition:
$$\mathbf{i} = \sqrt{-1}$$

$$i^2 = -1$$

A little about Imaginary Numbers

First used in the 16th century

 Rene Descartes called them imaginary as a derogatory term

 Allow us to solve problems that real numbers cannot (specifically

polynomials)

Uses of Imaginary Numbers

- Engineering: Stress and Resonance
- Flow of fluid around objects
- Electric Circuits and Radio Waves
- Infinite Series

Adding and Subtracting Complex

Ex. 1
$$(5+8i)+(2+i)$$

 $7+9i$
Ex. 2 $(-4-8i)-(-1+4i)$
 $-4-8i+1-4i$
 $-3-12i$

Ex. 3 (-3 + 8i) + (4 + 8i) - (-6 - 5i) 7 + 7 | i 7 (1 + 3i)

Multiplying Complex Numbers

- Same steps as real numbers
- Turn i² into -1

Ex. 1
$$(-7i)(-5+5i)$$
 $(35+35i)$ $(35i-35i)$ $(35-35i)$ $(35-35i)$

Ex. 2
$$(5-2i)(-7-i)$$

 $-35-5i+14i+2i^2$
 $-35+9i-2$
 $(-37+9i)$

Ex. 3 - You try

$$(4+5i)^{2}$$

$$(4+5i)(4+5i)$$

$$16+20i+20i+25i^{2}$$

$$16+40i-25$$

$$(-9+40i)$$

$$= -5i^{2}(1-4i)$$

$$= 5(1-4i)$$

$$= 5(1-4i)$$

Rationals with complex numbers

- Cannot leave i in the denominator
- Use the conjugate to rationalize denominator

Ex. 1
$$\frac{6i}{5+2i} (5-2i)$$

$$30i-12i^{2}$$

$$25-10i+10i-4i^{2}$$

$$12+30i$$

$$\sqrt{9}$$

Ex. 2
$$\frac{6+7i}{-3-10i} \frac{(-3+|0i|)}{(-3+|0i|)}$$

$$-18+60i-21i+70i^{2}$$

$$-9-30i+30i-1000i^{2}$$

$$-88+39i$$

$$109$$

Ex. 3
$$\frac{-4 + 3i}{-8i}$$

$$\frac{-4i + 3i^{2}}{-8i^{2}}$$

$$-8i^{2}$$

$$-8i^{2}$$

$$-8i^{2}$$

$$-8i^{2}$$

Simplifying Negative Radicals

- Separate out $\sqrt{-1}$
- Turn √-1 into i
- Simplify remaining radical as usual

Ex.1
$$\sqrt{-25}$$
 $(5i)$ (75)

Ex. 2
$$\sqrt{-27}$$
 $\sqrt{-137}$ $\sqrt{31/3}$

Ex. 3
$$-12\sqrt{-96}$$

Ex. 4 - You Try

$$-6i\sqrt{-54}$$

Wrap - Up

Why are there imaginary numbers?

What is the definition of i?

When must complex numbers be applied to radical expressions?

Tuesday's Quiz

What's on it?

- Simplifying single number radicals
- +,-,x radicals
- Rationalizing the denominator
- All complex numbers from today

What's not?

- Higher index radicals
- Variables under radical

On Test

Tonight's HW

- Homework #7
- Study for Quiz

$$1) \quad \frac{9i}{2-3i}$$

2)
$$7\sqrt{-125}$$